Difference between revisions of "Discrete Fourier transform"
From ScienceZero
(New page: The DFT has no restrictions on array size (n) and is hard to get wrong. It is a very expensive transform that takes O*n<sup>2</sup> operations. 'Complex Forward transform For i = 0 To n...) |
|||
| Line 43: | Line 43: | ||
Next i | Next i | ||
| − | [[Category: | + | |
| + | [[Category:General information]] | ||
Latest revision as of 14:49, 23 March 2008
The DFT has no restrictions on array size (n) and is hard to get wrong. It is a very expensive transform that takes O*n2 operations.
'Complex Forward transform
For i = 0 To n - 1
arg = -(2 * PI * i) / n
For k = 0 To n - 1
cosarg = Cos(k * arg)
sinarg = Sin(k * arg)
dataOutR(i) = dataOutR(i) + (dataInR(k) * cosarg - dataInI(k) * sinarg)
dataOutI(i) = dataOutI(i) + (dataInR(k) * sinarg + dataInI(k) * cosarg)
Next k
dataOutR(i) = dataOutR(i) / n
dataOutI(i) = dataOutI(i) / n
Next i
'Real Forward transform
For i = 0 To n - 1
arg = -(2 * PI * i) / n
For k = 0 To n - 1
dataOutR(i) = dataOutR(i) + (dataInR(k) * Cos(k * arg) + (dataInR(k) * Sin(k * arg))
Next k
dataOutR(i) = dataOutR(i) / n
Next i
'Complex Reverse transform
For i = 0 To n - 1
arg = (2 * PI * i) / n
For k = 0 To n - 1
cosarg = Cos(k * arg)
sinarg = Sin(k * arg)
dataOutR(i) = dataOutR(i) + (dataInR(k) * cosarg - dataInI(k) * sinarg)
dataOutI(i) = dataOutI(i) + (dataInR(k) * sinarg + dataInI(k) * cosarg)
Next k
Next i
'Real Reverse transform
For i = 0 To n - 1
arg = (2 * PI * i) / n
For k = 0 To n - 1
dataOutR(i) = dataOutR(i) + (dataInR(k) * Cos(k * arg) + (dataInR(k) * Sin(k * arg))
Next k
Next i